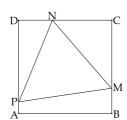

## UNIVERSIDADE FEDERAL DE SANTA CATARINA X OLIMPÍADA REGIONAL DE MATEMÁTICA PET – MATEMÁTICA



## Prova 2ª fase de 2007 Nível 3


- **1.** Seja uma função f, definida no conjunto dos números racionais positivos. Sabendo que f(1) = 7 e  $f(x \cdot f(y)) = x \cdot f(f(y))$ , calcule f(2007).
- **2.** Em um quadrado ABCD, de lado AB=l, inscreve-se um quarto de círculo  $C_1$  com centro em A. Na região delimitada pelos lados BC e CD e pela circunferência de  $C_1$  inscreve-se um círculo  $C_2$ . Na região delimitada pelos lados BC, CD e pela circunferência de  $C_2$  inscreve-se um outro círculo  $C_3$ , e assim por diante (veja figura). Calcule a área do círculo  $C_n$  assim construído, em função do lado l do quadrado.



- 3. A seqüência de Farey é uma seqüência de frações entre 0 e 1 construida com as seguintes etapas:
- (1)  $\frac{0}{1}$   $\frac{1}{1}$
- (2)  $\frac{0}{1}$   $\frac{1}{2}$   $\frac{1}{1}$
- $(3) \ \frac{0}{1} \quad \frac{1}{3} \quad \frac{1}{2} \quad \frac{2}{3} \quad \frac{1}{1}$
- (4)  $\frac{0}{1}$   $\frac{1}{4}$   $\frac{1}{3}$   $\frac{2}{5}$   $\frac{1}{2}$   $\frac{3}{5}$   $\frac{2}{3}$   $\frac{3}{4}$   $\frac{1}{1}$

e assim por diante, sempre tomando duas frações vizinhas  $\frac{p}{q}, \frac{r}{s}$  e inserindo-se entre elas a fração  $\frac{p+r}{q+s}$ . Mostre que em qualquer etapa da construção da seqüência de Farey quaisquer duas frações vizinhas  $\frac{p}{q} < \frac{r}{s}$  satisfazem ps-qr=-1.

**4.** O quadrado ABCD tem lado 1 e a distância AP (veja figura) é igual a  $\frac{1}{8}$ . Calcule o lado do triângulo eqüilatero PMN inscrito no quadrado. Seria possível outra configuração para os vértices M e N (por exemplo, M em AB e N em CD)? Explique.



**5.** Mostre que a soma de todos os números de nove algarismos distintos, formados somente com algarismos de 1 a 9 é um múltiplo de 111.111.111.